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Abstract

Variations in oligonucleotide microarray probe signals that result from various

factors, including differences in sample concentrations, can lead to major problems in

the interpretation of data obtained from different experiments. Normalization of such

signals is typically performed by procedures involving division by a constant approxi-

mately determined by average signal intensities as, e.g., in the Affymetrix software. Here

we show that Affymetrix oligonucleotide probe signal distributions can be fitted by

using a superposition of two normal or two extreme distributions, and that by using

such distributions we can normalize data with high accuracy (parametric algorithm). We

also developed a second algorithm (nonparametric) based on ranking of signal inten-

sities which gave equal or better normalization than the parametric one. These ap-

proaches have been used for normalization of three sets of data obtained from cancer

cell lines, peripheral blood mononuclear cells from patients with HIV infections, and

adipose cells from patients with diabetes, and others. Both, parametric and nonpara-

metric normalization procedures, were found to be superior when compared to the

standard global normalization approach [Affymetrix Microarray Suite User Guide.

Version 4.0 (2000)]. These results suggest that the new approaches may be helpful for

microarray data normalization especially for comparison of clinical data where inter-

patient differences can be large and difficult to avoid.
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1. Introduction

Studies of large-scale gene expression based on oligonucleotide or cDNA

microarray technology have become an important part of biomedical research
over the last few years [2,3]. Gene expression in a high-density oligonucleotide

microarray is measured by the signal intensities of probe pairs: perfect match,

PM, and mismatch, MM. The number of these pairs of probes for each par-

ticular gene can vary significantly (from several to tens of probes). The average

difference PM–MM or the logarithm of the ratio PM/MM is usually used to

calculate gene expression.

Variations in oligonucleotide microarray probe signals, which arise from a

variety of sources including differences in sample concentrations, can lead to
major problems in the interpretation of data obtained from different experi-

ments. To compare probe intensities for two or more arrays it is necessary to

normalize them. Several different approaches have been used for normaliza-

tion. The simplest method is the use of a single normalization factor for all

probe signal intensities [1]. This factor can be calculated as a ratio of average

differences PM–MM or logðPM=MMÞ for the two arrays under comparison.
As has been previously noted [4], linear relation between intensities of different

arrays does not hold in general and the distribution of low-intensity signals
behaves differently from the distribution of high-intensity signals. To account

for this discrepancy, a change point detection technique was applied wherein

the entire set of intensities was divided into two blocks so that linear regression

could be used effectively. Another approach is based on a given set of

‘‘housekeeping’’ genes (genes believed to be equally expressed for two different

experiments). Two criteria used to measure the quality of normalization were

proposed [5]: (1) a minimum of PM–MM difference variance across a series of

arrays and (2) the stability of expression ratios in simulated data.
Here we show that Affymetrix oligonucleotide probe signal distributions can

be fitted by using a superposition of two normal or two extreme distributions,

and that by using such distribution we can normalize data with high accuracy

(parametric algorithm). We also developed a second algorithm (nonparamet-

ric) based on ranking of signal intensities which gave equal or better normal-

ization than the parametric one. Differences between values of normalized and

model sample histograms as well as average correlation coefficients between

probe intensities before and after normalization for all genes were used as
criteria for the quality of normalization.

2. Probe signal intensity distributions

The probe signal intensities can vary significantly (several orders of mag-
nitude). The distribution of the logarithm of probe signal intensities for one
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sample is represented in Fig. 1. One can see that the distribution is nonsym-

metrical and at higher intensities, the histogram exhibits a two-exponential

behavior. The histogram data can be fitted by the nonsymmetrical probability
distribution function (pdf) or by the combination of symmetrical and/or

nonsymmetrical pdfs. To fit the data a combination of normal, gamma, largest

extreme and Weibull pdfs [6] were tested. The best fitting was obtained when

weighted sum of two log-extreme largest value pdfs was used (Fig. 1):

Eðx; a; bÞ ¼
X2
i¼1

Ai

bi
exp

ai � ln x
bi

� �
exp

�
� exp ai � ln x

bi

� ��
;

where ai, bi are the parameters of ith largest extreme value distribution and Ai

are weighting factors (i ¼ 1; 2). Introduction of a third term in the distribution
function did not improve fitting significantly. Using these results, one can as-
sume that the whole set of logarithm of signal intensities in a microarray can be

Fig. 1. Distribution of logarithm of probe intensitites in regular (a) and logarithm (b) scale.
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read as a product of two random variables having the log-extreme largest value

distribution with different parameters in general. The ith subset of variables

consists of Ni ¼ NAi=ðA1 þ A2Þ values, where N is the total number of probes
in microarray.

3. Parametric normalization

Let us consider two sets of probe signal intensity values: array to be nor-

malized and model array (array against which normalization will be done) and

assume that the whole set of logarithm of signal intensities for each microarray

can be generated by realization two log-extreme largest random variables with

parameters ai, bi, i ¼ 1; 2. Let us then transform the values within each subset
of array to be normalized with respect to corresponding subsets of model

array. The transformation for each subset is linear and can be calculated as

INi ! bMi
ln INi � aNi

bNi
þ aMi :

Here i ¼ 1; 2 means the first and the second subset, respectively, and subscripts
M and N denote model and array to be normalized, respectively. After this

linear transformation, we will have two subsets of intensities distributed as

largest extremes with the parameters aMi , b
M
i .

During the data transformation we have to know for each probe, whether

it belongs to the first or to the second subset. This problem can be solved

by introducing a decision function. Let us consider two values

qi ¼ pi=ðp1 þ p2Þ; i ¼ 1; 2;

where piðxÞ ¼ Aimin (ECðx; ai; biÞ, 1� ECðx; ai; biÞ) and ECðx; a; bÞ, the cumu-
lative distribution function of log-extreme largest value. Let us define qi as the
probability that x belongs to the ith subset of probes. One possible formula for

the decision function is ½2� q1ðxÞ� ¼ i, where: [*] is the nearest integer number
and i is equal to 1 or 2 when x belongs to the to the first or second subset of

probes, respectively. The other decision can be generated by the following rule:

x belongs to the first subset if r < q1ðxÞ and to the second one if rP q1ðxÞ,
where r¼ random variable uniformly distributed in the interval [0, 1].

4. Nonparametric normalization

Let us order the probe signal intensity values for both model and arrays

to be normalized and consider the following procedure for aligning the
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two histograms. The frequency Mk for the kth interval of histogram [Xminþ
ðk � 1ÞXD;Xmin þ kXD] depends on the three user-defined histogram parameters:

minimum (Xmin) and maximum (Xmax) values and numbers of intervals
N ðXD ¼ ðXmax � XminÞ=N , k ¼ 1; . . . ;NÞ. Let us transform Mk values of an
array to be normalized with indexes from nk to nk þMk � 1ðn0 ¼ 1Þ using the
formula ln INi ! ln INi � b

� �
=a, where a, and b are the parameters transforming

linearly the interval [ln IMnk ; ln I
M
nkþMk�1] to the interval ½ln I

N
nk
; ln INnkþMk�1� and

repeat the calculation for all values of k ðnkþ1 ¼ nk þMkÞ. When k ¼ N , the
resulting data set is normalized.

5. Quality of normalization algorithms

Two parameters were used to estimate the quality of the normaliza-

tion methods. The first one is the sum of square of differences between the

model and normalized histogram values (Q). For two identical sets of values, Q

equals 0, and does not depend on the parameters of the histogram. Data

transformation should not change significantly the proportion between dif-

ferent probe signal intensities for each particular gene before and after nor-

malization. To measure this difference we used the second parameter for the
quality of normalization: Pearson correlation coefficient (R) between signal

intensity values before and after normalization for each gene. Average values

and standard deviations of R for all genes as well as minimum and maximum

values of R and number of genes having R < 0:5 were calculated for each
microarray.

6. Results

By using the parametric and nonparametric procedures we normalized mi-

croarray data obtained from cancer cell lines, adipose cells from patients with

diabetes, and peripheral blood mononuclear cells from patients with HIV in-

fections (Fig. 2, 12 microarrays). Both, parametric and nonparametric nor-

malization procedures, were better compared to the standard global

normalization approach. One can see that for both approaches, the final dis-

tribution is very close to the distribution of model data set. The average values
of R for genes before and after parametric and nonparametric normalization

were close to 1.0 with typical standard deviation of about .01–.05, These results

suggest that the new approaches could be helpful for microarray data nor-

malization especially for comparison of clinical data where the interpatient

differences can be large and difficult to avoid.
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7. Discussion

We have developed two different algorithms for microarray data normal-

ization which have been applied to clinical data. Both algorithms are based on

the assumption that up- and down-regulated genes do not change significantly

the histogram of probe signal intensity distributions.

The first algorithm (parametric normalization) requires data fitting to esti-
mate the parameters of the probe signal intensity distribution. The histogram

of the logarithm of probe signal intensities has a nonsymmetrical shape and

can be fitted either by a nonsymmetrical probability density function (pdf) or

by a combination of symmetrical and/or nonsymmetrical pdfs. The histograms

analyzed in this paper were fitted by the weighted sum of two log-extreme

largest value pdfs. Increasing the number of log-extreme largest value pdfs (as

well as combination of other pdfs) did not improve the data fitting signifi-

cantly.
The second algorithm is nonparametric. It aligns the signal intensity dis-

tributions of the two arrays by using series of intervals of normalization. All

signal intensities within the interval are normalized using linear transforma-

tion. This algorithm depends only on maximum, minimum values of arrays and

the length of the interval of normalization. It should be noted that there are

two extreme cases for this algorithm, where: (1) the interval of normalization is

equal to the difference between maximum and minimum values; and (2) the

Fig. 2. Distribution of logarithm of probe intensities for 12 different experiments before and after

global, parametric, and nonparametric normalization.
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interval of normalization is small and it contains 6 1 values. The first case

corresponds to the well-known method of ‘‘global’’ normalization when a

single normalization factor is used for the whole set of microarray data. The

linear relation between array intensities usually does not hold in general and
the value of error Q after normalization will be not optimal. Correlation co-

efficient R for this extreme case will be exactly 1 for all genes. The second case

is equivalent to the substitution of the values of the signal intensities for the

array to be normalized by those for the model array with respect to the po-

sitions of values obtained after ordering. It provides the optimal values of Q for

this method (Q ¼ 0) but the average correlation coefficient R for genes is not
optimal. It means that the optimal size for the interval of normalization exists

and can be found using a weighted sum of Q and R as the objective function.
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